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Abstract. We introduce and study a model of granular fracture to mimic the dynamics o f  
rock fragmentation. The model describes a rock as an assembly of interacting p i n s  that 
evolve in time according to Newtonian dynamics. T h e  main ingredient describing macro- 
scopic rather than microscopic dynamics is a history-dependent attractive potential between 
pairsafgrains. which isset tozeroafter the pair first moves beyond somethresholddistance 
apan. We study the characteristics of the distribution of duster sizes and compare them 
with the corresponding characteristics of the percolation problem. Our results show a 
decrease of the clwter numbers with sample size and an apparent breakdown of hyperscal- 
ing. We also find a dependence of critical exponents on the average initial kinetic energy 
of our system. 

The characteristics of crack systems in rocks and the distribution of the sizes of the 
generated fragments is essential to many fields of science and technology. A few 
examples are oil recovery, mining and the strength of materials. 

Mechanisms for the description of the formation and propagation of cracks range 
from continuous descriptions [ I ,  21 (in which it may be very difficult to obtain numeri- 
cally the characteristics of a whole system of cracks) to lattice type descriptions [3-1 I]. 
In the latter one can find different approaches, from solution of the elastic equations 
for a single crack [3-41, through stress-dependent random generation of cracks (as in 
the random fuse model [S-71 or the kinetic breaking model [S-IO]), to percolation 
descriptions of fracture [ I l l .  The single crack models are not useful for describing an 
assembly of cracks. The percolation model assumes random formation of microcracks, 
while natural cracks in many cases are correlated. In the random fuse model or kinetic 
breaking model, the dynamics is artificial and imposes equilibrium on the system. 

In the following we present a model that mimics the dynamics of natural fragmenta- 
tion. The expectations of such a model are that it will dynamically introduce natural- 
looking correlations into the crack systems. 

For real problems it  is important to know not only what are the pieces of matter 
separated by cracks, i.e. the fragments, but also what is the geometry of the crack itself 
(e.g. its width as a function of its length, etc). Since the model presented here is 
described in a continuum, it might be possible to obtain (though not done here) 
additional geometrical information, beyond the information obtained on a lattice. 
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I n  our model, the granular fracture model (GFM), a rock is described by an assembly 
of elementary building blocks. These building blocks represent macroscopic grains. In  
such a representation of a rock, we ignore cracks within the grains. 

We assume now that the grains are spherical. The interaction between any two 
grains is basically a hard core one, described numerically by a scattering process once 
the distance between centres is the diameter of the grain, Rmin. In addition to that, we 
assume a continuous force which is responsible for the cohesion in the system, We 
assume that the force exerted by the j th  on the ith grain is 

1: otherwise 
where r, is the distance between the centres of the i and j grains, g, is a unit vector 
pointing from r, to r,, Ro (Rmin < Ro< R,,,) is the point where the force changes from 
repulsive to attractive, R,,, is the point in which the force vanishes and F, and F2 
are constants. This force is assumed to act only between grains which were nearest 
neighbours on the initial lattice configuration, because it results from short-range 
interactions on the surface of the grains. Furthermore, it is history-dependent and it 
is set equal to zero for all later times once rl, has increased beyond R,,,. The 'glue' 
property of the interaction represents the fact that once a macroscopic crack has been 
generated, closing it geometrically does not restore the attractive forces between the 
pieces. 

We solve numerically Newton's equations of motion with the force described in 
( l ) ,  and apply a simple scattering procedure in which the velocities of the two scattered 
particles are exchanged when r ,  = Rmin. We assume that all the grains have the same 
mass and located at time f = 0 on a square ZD lattice with r, = R,. The basic assumption 
here is that after some time randomization sets in, so that the initial square lattice 
(while important for numerical purposes, labelling, etc) will have no important effect 
on the structure of cracks at  later times. 

A real material is subject to the influence of external forces, that generate in turn 
some random velocities within the material. We take that into account by specifying 
a distribution of velocities from which the actual initial conditions are selected. We 
choose a uniform distribution with velocities IuI < U,, i.e. 

if r, 5 R,:. 

if R,:, < rl, < R,,, ( 1 )  Fl,= - [ F , ( r , - R , ) - F , ( r , - R , ) 2 1 ~ ,  

p ( 0 )  =(7ru3-1o(U,- (o l )  ( 2 )  
where uo is the cutoff velocity. 

In  the following, we use free boundary conditions. The dimensionless parameters 
used to obtain the results reported here are F! = 50; F2 = 100, R z S z  = 1.1, R,i, = 1.0; 
R o =  1.05. The mass m of a grain is taken to be 1. 

The time step At in the numerical solution was chosen to obey 

IOU" A f  S R,,, - R,in. (3) 
The assembly of grains was evolved in time according to the procedure described 

above. In figure 1 we see a system of grains after 160 time steps, for U,,= 1; one can 
see that there is a crack spanning the system. The first time such a crack is found is 
defined as the fracture time, I , .  All the results presented here were obtained when the 
systems of grains were detected to be at the fracture time. 

Disfribufion of the number of clusters. We define a cluster of size s, as the assembly of 
s grains connected by a finite interaction at time f. We investigated the distribution of 
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Figure I .  The positions of the grains (white circles) a1 the fracture time (here 160 time 
sleps), for a 64x64 grains simulation. The cutoff velacily is 1. The crack spanning the 
system is emphasized by blackening half circles on both rides. 

the number of clusters of size s per lattice site at the fracture time, n s ( f c ) ,  as a function 
of s. Since the number of large clusters in a finite sample is very small, statistics of 
large clusters is very hard to achieve in a reasonable number of simulations. Thus we 
collected the number of clusters of sizes 2 ' s  s < 2'+', where i is an integer, into one 
number (this procedure is usually called 'binning' [12, 131). The outcome of such a 
procedure on a power-law distribution will be an effective exponent which is larger 
by a unity. We define the number of clusters of sizes between 2' and 2'+' (the binned 
data) as 

r = * l * l - ,  

v=2' 
N( fJ=  I: %(tJ for s = 2 ' + ' - 1 .  

The results for NT(fJ as a function of s for 95 systems of 64x64 grains with initial 
velocity uo= 1, on a log-log plot, is shown in figure 2. It seems that a power-law 
behaviour of the kind 

N,(f,)oCS-"-l' (4) 

describes the behaviour of n, relatively well up to cluster sizes of i to a of the system 
mass. There the number of clusters is much larger than expected according to (4). The 
slope in figure 2 gives the exponent - ( T -  1) in equation (4). The result for T as thus 
obtained using only statistical error and taking into account only the points from s = 3  
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Figure 2. The binned number of clusters of size s per lattice site, N,. as a function of I for 
a 64x64 system (open squares), and the partial sums (7)  as a function of s far the same 
system (full squares). The result of the extrapolation to infinite lattice sizes of N .  as a 
function o f  s are shown in the upper corner. The cut error barn denote very big errors that. 
due to least-squares fit have only a small influence on the line. In all the graphs the error 

I bars are purely statistical and U"= 1. 

to s = 1023 is 

r - 1  =1.35*0.01. (5) 

!n order !o compare !his !o !he cncorre!a!ed perro!a!inn exponent we performed 
the same procedure on 100 bond-percolating systems of 64x64  nodes in each. The 
probability of a bond to be broken in the percolating systems was the same as the 
average probability for a bond to be broken in the dynamic systems as was measured 
at the fracture time, f,, which turned out to be equal to the bond percolation threshold 
of a square lattice, p c =  0.5 within the statistical error. When a graph similar to that in 

(6) 

was found. This value differs from the theoretical percolation value E [ 14,151. (The 
difference is due to finite size effects [161.) 

figcr. 2 w1s p!o!!ed, 2 differen! expanen! of 
T - 1 = 0.989 * 0.007 
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Comparing our system to percolation at the large clusters, we see a striking 
difference. Out of 100 percolating systems at fracture concentration, 28 clusters of size 
s > 2047 were found. In contrast, 92 such clusters were found in the 95 dynamic systems. 
On the other hand, 54 clusters of size 51 1 < s < 1024 were found in the percolation 
systems, while only 1 was found in the 95 dynamical systems at 1,. 

The exponent T obtained for our system is found to be significantly different from 
that of percolation. We first checked whether this is not a spurious result originating 
in the procedure of analysis. Two sources that may lead to a deviation in the calculated 
T are the binning procedure and the finite size of the system. 

To check the effect of the binning procedure on the CFM exponent, we computed 
the partial sums 

m 

1 n A k )  ( 7 )  
$'>I 

for the GFM clusters. One can easily show [ I 3 1  that the result scales as s - ( ~ - ' ) ,  
independent of the binning procedure, since there is a summation in ( 7 ) .  The partial 
sums ( 7 )  are shown is figure 2 for 130 simulations, 64x64 grains with initial velocity 
1 in each. The slope is 

~-1=1.293*0.006. (8) 
In order to obtain the behaviour of the GFM systems for L infinite, we calculated 

N s ( f J  for different sizes of systems, varying from L =  10 to L = 7 8 ,  where L is the 
linear size of the initial lattice of grains. A linear extrapolation of Ns(Ic)  as a function 
of 1 / L  was then used to estimate the value of N,(t ,)  for L+m. The results of N, 
achieved this way are plotted on a log-log plot in figure 2 as a function of s. The slope 
in this graph is 

~-1=1.4*0.02.  (9) 
Both checks strongly suggest that T for percolation and for GFM are indeed different. 

The fractal dimension. In order to compare the fractal dimension [ 171 of percolation 
with that of the GFM we computed the latter while using the position of the grains on 
the initial lattice. To get the fractal dimension, we computed the average radius of 
gyration [18 ]  of the clusters at a given bin, R,. If the clusters are fractal, then the mass, 
M (or number of grains) of a cluster will be proportional to its radius to a fractional 
power, that is 

M , = R , D  (10) 

when D is defined as the fractal dimension. 
The results for R., for different sizes of systems and different initial velocities are 

plotted in figure 3. One can see, however, that the data from the different systems sit 
on the same curve. That implies that the fractal dimension of the GFM systems does 
not change much with the variation of the parameters of the model. This result may 
change if we examine the fractal dimension of the clusters using the real positions of 
the grains. The slope of the line in figure 3 was found to be: 

1/D = 0.52*0.02 (11) 

D =  1.92*0.07. (12) 

and thus 

This result is very close to the percolation result D =% [14, IS]. 
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Figure 3. The radius of gyration as a function of I for different systems: L = 78 and oo = I 
(open squares), L = 6 4  and U,= 1.2 (crossed squares), and L = 6 4  and u0=0.6 (circles). 

Dependence on the velocity cut08 The question arises whether the results reported so 
far will remain the same as we change the parameters of the model. To examine this 
question we repeated the simulations discussed above for cutoff velocities different 
than 1. In figure 4 one can see the behaviour of the exponent T- I as a function of 
the cutoff velocity. 7 peaks around vo = 1, going over to the percolation value at very 
large and very small U,,. The behaviour of T in the high initial velocity regime is clear. 
Since the velocities of the grains are large, the effect of the interaction between them 
is negligible and thus, since the distribution of the velocities is random, the breaking 
of the bonds is percolative. Such behaviour may be found in other physical processes, 
e.g. atomic nuclei break into lighter nuclei when hit by energetic projectiles [19]. The 
other parts of the graph in figure 4 are still not understood. 

In order to find whether the GFM systems show the same behaviour for different 
L, we plotted A',( 1,) for systems of L = 64 and L = 32 on the same plot. Scaling requires 

I 4 
9 

4 

1.1 4 9 

~~ 

9 
1.0 I I I 

10-7 1 10 102 

"0 

Figure 4. The dependence of the exponent i on uc,, for 64x64 systems. Thhe solid line 
represents the percolation value. The scale IS half-logarithmic for convenience. 
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the data to overlap (data collapse) if the appropriate scaling exponents are used. In 
figure 5 we obtained data collapse in the form: 

N . ( L ) a  L - ' ~ ( s / L ~ )  (13)  

where A = 1.9 and E = 2.76. Using ( I O )  and (12) the exponent A can be identified as 
the fractal dimension D. 

At criticality, equation (4) showed that N,as -"-" .  Equation (13) is consistent 
with that behaviour only if the function f behaves (for small x) as f(x)Ocx-"-". 
implying that 

with O = E - D ( r - l ) .  Using T-I-1 .35f0 .05 ,  D-1.9and E-2.76 we find 

0 = 0.2i0.1.  (15) 

Scaling thus requires that, unlike in percolation, the amplitude qo of the cluster numbers, 
N, = qo(L)s'-' depends on L. This is probably due to the fact that the largest cluster 
grows with L, causing a decrease in the small cluster numbers. 

Equation (14) implies that N , ( L )  may be written as a one-variable function 

N , ( L )  - f ( z ) o c z ~ " ~ "  (16) 

where z = sLB"'~''. In figure 6 we plot N , ( L )  against z on a log-log plot. The slope 
of the line is 1.293 iO.005, which agrees with (5). In order to get the best data collapse 

A 

A 

A 

A 

e 
B 4 

a 

t 
10-7 , , , , ,.,,, , , , , ,,,,, , , , ,. ,,,, , , , ,,...I I 1 ,-I, I . .,."I 

10.' 10" 10-2 10-1 1 10 102 

* / L A  

Figure 5. Data collapse of N. for 64x64 and 3 2 x 3 2  syslcms with U,, = 1. with exponents 
A = 1.9 and B = 2.76. 



L1182 letter to the Editor 

1.  
0 10 
A 2 0  
+ 3 2  
x LO 
0 50 
0 6 L  
0 78 

I 

Figure 6. Data collapse of N ,  (equation (16)) for different system sizes, for P=O.29 and 
oo = I .  Only the decreasing part of N ,  is used, and the points for s = 1 are omitted. 

we used different values for the exponent P = O/(T- 1). We obtained the best data 
L-urrapsc ">lug r = ".L7, WI11L11 grvca 

e = 0.37. (17) 

Another way to get 8 is t o  plot the amplitude q O = s ' - ' N ( s ,  L )  for a specific s 
against L. Doing that, we observe a qualitative decrease of q0 as a function of L. 
However, the data were not sufficiently accurate to yield an estimate for 0. 

We thus see that the GFM cluster numbers obey normal scaling. The situation is 
more complicated with hyperscaling. In  percolation, one has the hyperscaling relation 

^ ^ I , ^ _ ^ ^  ..- :-.. n-0 -n  ... L:"L 

D + d  
D 

I=- 

In percolation, this relation results from the fact that 

and the prefactor L-" comes from the fact that N ,  scales like a density of points in 
the full Euclidean sample [20]. A comparison between (13) and (19) shows that the 

reflects the decrease of the total number of small clusters due to the fast increase of 
the largest cluster. Thus, hyperscaling is broken. 

A breakdown of hyperscaling also occurs for percolation in dimensions d > 6 [20]. 
There it happens due to the appearance of a 'dangerous irrelevant variable' w, [20] so 

hypersca!ixg !a- {y?) *oc!d hold o"!y i: .*e had ,a,(f, The f2ct that _n>d zg.ln 
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that 

The functionf(x,y) is singular in y, f ( x ,  y ) a ~ y - " ,  so that we end up with 

and thus, in the case here: B = d + KW and KW = 0.76. At present we have no direct 
explanation of the new variable w for our fracture model. 

To summarize, we have introduced the CFM in order to mimic fragmentation of 
rock. The analysis of the fragments at I , ,  the time where a first crack goes through the 
system, can be done in an analogous way to the procedures used in percolation. The 
results for the critical exponents are different from those for percolation. Scaling holds, 
but requires a dependence of n, on the size of the system, while hyperscaling is broken. 
We find also that the exponents depend on the kinetic energy per particle (the cutoff 
velocity) in the system, and the most marked departure from percolation occurs around 
uo= 1. At the present stage it is not clear, whether indeed there is a continuous 
dependence of the exponents on oo or whether, like in phase transitions, we see just 
effective exponents, resulting from a crossover between the percolation exponents valid 
for almost all oo, to some special exponents at the isolated point v,,=l. 
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